I need to calculate in Tanah-1 to C #
(and Lion-1 and Cop 1)
I did not find a monastery in the library .. any suggestions?
EDIT: TANK NOT TAN !!
You need to use existing functions such as Math.sin
you may find it useful:
Sikynt sec (x) = 1 / cos (x) Cosekant Cosek (x) = 1 / Sin (x) Cotenjent Kotan (x) = 1 / TAN (X) Inverted Sun arcaskin (x) = ATN (X / SKR (-X * X + 1)) Inverted cosine arcos (x) = ATN (-X / SCR (-X * X + 1)) + 2 * ATN (1) Inverted sycinate Arccec (X) = 2 * ATN (1) - ATN (S) Inverted Cosacket Arakosek (X) = ATN (X * X - 1) SVG (X * X - 1) Inverted Cortex Arcton (x) = 2 * ATN (1) - ATN (X) hyperbolic sine HSin (x) = (XP (x) - XP / 2 hyperbolic cosine HCOS (x) = (XP (x) + exp (-x)) / 2 hyperbolic Tanzant HTN (x) = (exp (x) - exp (- x)) / (exp) xper (x) = xp (x) hyperbolic seqt a SCE (x) = 2 / (XP (x) + XP (-x) Hyperbolic COSCant HCOSEAC (x) = 2 / (XP (x) - XP (-x) Hyperbolic coatent H Cotton (x) = (Exp) (x) + Exports (-aks)) / (Exports (X) - XP (-aks)) reversal Haiprbolik Sign Harsksin (x) = log (x + Skear (x * x + 1))) inverse cosine Haiprbolik HArccos ( X) = log (X + Sqr (X * X - 1)) inverse hyperbolic Tanjent Hritn (x) = log ((1 + x) / (1 - x)) / 2 are inverted Aiprbolik Sikant Harssi (x) = log ((Skear (-X * X + 1) + 1) / x) Reversal Haiprbolik Cosekant Hrakosek (x) = log ((SGN (X) * Skear (x * x + 1) + 1) / x) Inverted hyperbolic cotant Haracotton (x) = log ((x + 1) / (x -1) / 2 logarithm base n logen (x) = log (x) / log (n)
Comments
Post a Comment